76 lines
2.4 KiB
Python
76 lines
2.4 KiB
Python
from fastapi import APIRouter
|
|
from pydantic import BaseModel
|
|
from typing import List, Any
|
|
from problems.flower_planting.problem import FlowerPlantingProblem
|
|
|
|
router = APIRouter(
|
|
prefix="/flower_planting",
|
|
tags=["flower_planting"],
|
|
responses={404: {"description": "Not found"}},
|
|
)
|
|
|
|
problem_solver = FlowerPlantingProblem()
|
|
|
|
class GenerateRequest(BaseModel):
|
|
length: int = 10
|
|
n: int = 0 # 0 means auto-generate challenging N
|
|
|
|
class SolveRequest(BaseModel):
|
|
flowerbed: List[int]
|
|
n: int
|
|
algorithms: List[str] = ["greedy", "brute_force"]
|
|
|
|
class BenchmarkRequest(BaseModel):
|
|
sizes: List[int] = [10, 15, 20, 25]
|
|
algorithms: List[str] = ["greedy", "brute_force"]
|
|
|
|
@router.post("/generate")
|
|
async def generate_case(req: GenerateRequest):
|
|
return problem_solver.generate_case(length=req.length, n=req.n)
|
|
|
|
@router.post("/solve")
|
|
async def solve_case(req: SolveRequest):
|
|
input_data = {"flowerbed": req.flowerbed, "n": req.n}
|
|
results = []
|
|
|
|
for algo in req.algorithms:
|
|
try:
|
|
if algo == "brute_force" and len(req.flowerbed) > 25:
|
|
results.append({
|
|
"algorithm": algo,
|
|
"error": "Input too large for Brute Force (limit 25)",
|
|
"skipped": True
|
|
})
|
|
continue
|
|
|
|
res = problem_solver.solve(input_data, algo)
|
|
results.append(res)
|
|
except Exception as e:
|
|
results.append({"algorithm": algo, "error": str(e)})
|
|
return results
|
|
|
|
@router.post("/benchmark")
|
|
async def benchmark(req: BenchmarkRequest):
|
|
benchmark_results = []
|
|
for size in req.sizes:
|
|
input_data = problem_solver.generate_case(length=size)
|
|
|
|
size_result = {"size": size, "algorithms": []}
|
|
for algo in req.algorithms:
|
|
try:
|
|
if algo == "brute_force" and size > 25:
|
|
size_result["algorithms"].append({
|
|
"algorithm": algo,
|
|
"time_seconds": None,
|
|
"skipped": True
|
|
})
|
|
continue
|
|
|
|
res = problem_solver.solve(input_data, algo)
|
|
size_result["algorithms"].append(res)
|
|
except Exception as e:
|
|
size_result["algorithms"].append({"algorithm": algo, "error": str(e)})
|
|
|
|
benchmark_results.append(size_result)
|
|
return benchmark_results
|