71 lines
2.4 KiB
Python
71 lines
2.4 KiB
Python
from fastapi import APIRouter, HTTPException
|
|
from pydantic import BaseModel
|
|
from typing import List, Optional, Dict, Any
|
|
from problems.max_subarray.problem import MaxSubarrayProblem
|
|
|
|
router = APIRouter(
|
|
prefix="/max_subarray",
|
|
tags=["max_subarray"],
|
|
responses={404: {"description": "Not found"}},
|
|
)
|
|
|
|
problem_solver = MaxSubarrayProblem()
|
|
|
|
class GenerateRequest(BaseModel):
|
|
size: int = 100
|
|
min_val: int = -100
|
|
max_val: int = 100
|
|
|
|
class SolveRequest(BaseModel):
|
|
array: List[int]
|
|
algorithms: List[str] = ["kadane", "divide_conquer", "brute_force"]
|
|
|
|
class BenchmarkRequest(BaseModel):
|
|
sizes: List[int] = [10, 50, 100, 500, 1000]
|
|
algorithms: List[str] = ["kadane", "divide_conquer", "brute_force"]
|
|
|
|
@router.post("/generate")
|
|
async def generate_case(req: GenerateRequest):
|
|
return problem_solver.generate_case(size=req.size, min_val=req.min_val, max_val=req.max_val)
|
|
|
|
@router.post("/solve")
|
|
async def solve_case(req: SolveRequest):
|
|
input_data = {"array": req.array}
|
|
results = []
|
|
for algo in req.algorithms:
|
|
try:
|
|
res = problem_solver.solve(input_data, algo)
|
|
results.append(res)
|
|
except ValueError as e:
|
|
results.append({"algorithm": algo, "error": str(e)})
|
|
return results
|
|
|
|
@router.post("/benchmark")
|
|
async def benchmark(req: BenchmarkRequest):
|
|
benchmark_results = []
|
|
for size in req.sizes:
|
|
# Generate a random case for this size
|
|
# To reduce noise, we might want to run multiple times and average,
|
|
# but for now single run per size is fine for demonstration
|
|
input_data = problem_solver.generate_case(size=size)
|
|
|
|
size_result = {"size": size, "algorithms": []}
|
|
for algo in req.algorithms:
|
|
try:
|
|
# Skip O(N^2) for very large inputs to avoid timeout
|
|
if size > 5000 and algo == "brute_force":
|
|
size_result["algorithms"].append({
|
|
"algorithm": algo,
|
|
"time_seconds": None,
|
|
"skipped": True
|
|
})
|
|
continue
|
|
|
|
res = problem_solver.solve(input_data, algo)
|
|
size_result["algorithms"].append(res)
|
|
except Exception as e:
|
|
size_result["algorithms"].append({"algorithm": algo, "error": str(e)})
|
|
|
|
benchmark_results.append(size_result)
|
|
return benchmark_results
|