25-cxsj-final/backend/routers/max_subarray_router.py

71 lines
2.4 KiB
Python

from fastapi import APIRouter, HTTPException
from pydantic import BaseModel
from typing import List, Optional, Dict, Any
from problems.max_subarray.problem import MaxSubarrayProblem
router = APIRouter(
prefix="/max_subarray",
tags=["max_subarray"],
responses={404: {"description": "Not found"}},
)
problem_solver = MaxSubarrayProblem()
class GenerateRequest(BaseModel):
size: int = 100
min_val: int = -100
max_val: int = 100
class SolveRequest(BaseModel):
array: List[int]
algorithms: List[str] = ["kadane", "divide_conquer", "brute_force"]
class BenchmarkRequest(BaseModel):
sizes: List[int] = [10, 50, 100, 500, 1000]
algorithms: List[str] = ["kadane", "divide_conquer", "brute_force"]
@router.post("/generate")
async def generate_case(req: GenerateRequest):
return problem_solver.generate_case(size=req.size, min_val=req.min_val, max_val=req.max_val)
@router.post("/solve")
async def solve_case(req: SolveRequest):
input_data = {"array": req.array}
results = []
for algo in req.algorithms:
try:
res = problem_solver.solve(input_data, algo)
results.append(res)
except ValueError as e:
results.append({"algorithm": algo, "error": str(e)})
return results
@router.post("/benchmark")
async def benchmark(req: BenchmarkRequest):
benchmark_results = []
for size in req.sizes:
# Generate a random case for this size
# To reduce noise, we might want to run multiple times and average,
# but for now single run per size is fine for demonstration
input_data = problem_solver.generate_case(size=size)
size_result = {"size": size, "algorithms": []}
for algo in req.algorithms:
try:
# Skip O(N^2) for very large inputs to avoid timeout
if size > 5000 and algo == "brute_force":
size_result["algorithms"].append({
"algorithm": algo,
"time_seconds": None,
"skipped": True
})
continue
res = problem_solver.solve(input_data, algo)
size_result["algorithms"].append(res)
except Exception as e:
size_result["algorithms"].append({"algorithm": algo, "error": str(e)})
benchmark_results.append(size_result)
return benchmark_results