from typing import List def solve_dp(grid: List[List[int]]) -> int: """ Dynamic Programming solution for Minimum Path Sum. O(M * N) """ if not grid or not grid[0]: return 0 rows, cols = len(grid), len(grid[0]) dp = [[0] * cols for _ in range(rows)] dp[0][0] = grid[0][0] # Initialize first row for j in range(1, cols): dp[0][j] = dp[0][j-1] + grid[0][j] # Initialize first column for i in range(1, rows): dp[i][0] = dp[i-1][0] + grid[i][0] # Fill the rest for i in range(1, rows): for j in range(1, cols): dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[rows-1][cols-1] def solve_recursion(grid: List[List[int]]) -> int: """ Recursive Brute Force solution (Top-Down without Memoization). O(2^(M+N)) Only for very small inputs! """ if not grid or not grid[0]: return 0 rows, cols = len(grid), len(grid[0]) # Safety check to prevent freezing/recursion depth errors on large inputs if called accidentally if rows + cols > 18: # Fallback to DP for safety if input is too large for naive recursion return solve_dp(grid) def helper(r, c): if r == 0 and c == 0: return grid[0][0] if r < 0 or c < 0: return float('inf') return grid[r][c] + min(helper(r-1, c), helper(r, c-1)) return helper(rows-1, cols-1)