from fastapi import APIRouter, HTTPException from pydantic import BaseModel from typing import List, Optional, Dict, Any from problems.n_queens.problem import NQueensProblem router = APIRouter( prefix="/n_queens", tags=["n_queens"], responses={404: {"description": "Not found"}}, ) problem_solver = NQueensProblem() class GenerateRequest(BaseModel): n: int = 8 class SolveRequest(BaseModel): n: int algorithms: List[str] = ["backtracking"] class BenchmarkRequest(BaseModel): sizes: List[int] = [4, 8, 10, 12] algorithms: List[str] = ["backtracking"] @router.post("/generate") async def generate_case(req: GenerateRequest): return problem_solver.generate_case(n=req.n) @router.post("/solve") async def solve_case(req: SolveRequest): input_data = {"n": req.n} results = [] for algo in req.algorithms: try: res = problem_solver.solve(input_data, algo) results.append(res) except ValueError as e: results.append({"algorithm": algo, "error": str(e)}) return results @router.post("/benchmark") async def benchmark(req: BenchmarkRequest): benchmark_results = [] for size in req.sizes: input_data = {"n": size} size_result = {"size": size, "algorithms": []} for algo in req.algorithms: try: # Skip large N for backtracking if finding all solutions (though our solve defaults to one for large N) # But for benchmark we might want to be careful. if size > 14 and algo == "backtracking": size_result["algorithms"].append({ "algorithm": algo, "time_seconds": None, "skipped": True }) continue res = problem_solver.solve(input_data, algo) size_result["algorithms"].append(res) except Exception as e: size_result["algorithms"].append({"algorithm": algo, "error": str(e)}) benchmark_results.append(size_result) return benchmark_results